
Constrained Social Community Recommendation
Xingyi Zhang

∗

The Chinese University of Hong Kong

Hong Kong SAR, China

xyzhang@se.cuhk.edu.hk

Shuliang Xu

Wenqing Lin
†

Tencent

Shenzhen, China

shuliangxu,edwlin@tencent.com

Sibo Wang
†

The Chinese University of Hong Kong

Hong Kong SAR, China

swang@se.cuhk.edu.hk

ABSTRACT
In online social networks, users with similar interests tend to come

together, forming social communities. Nowadays, user-defined com-

munities become a prominent part of online social platforms as

people who have joined such communities tend to be more active

in social networks. Therefore, recommending explicit communities

to users provides great potential to advance online services.

In this paper, we focus on the constrained social community

recommendation problem in real applications, where each user can

only join at most one community. Previous attempts at community

recommendation mostly adopt collaborative filtering approaches or

random walk-based approaches, while ignoring social relationships

between users as well as the local structure of each community.

Therefore, they only derive an extremely sparse affinity matrix,

which degrades the model performances. To tackle this issue, we

propose ComRec which simultaneously captures both global and

local information on the extended graph during pre-computation,

speeding up the training process on real-world large graphs. In ad-

dition, we present a labeling component to improve the expressive-

ness of our framework. We conduct experiments on three Tencent

mobile games to evaluate our proposed method. Extensive exper-

imental results show that our ComRec consistently outperforms

other competitors by up to 12.80% and 6.61% in the corresponding

evaluation metrics of offline and online experiments, respectively.

CCS CONCEPTS
• Information systems→ Social recommendation; Social net-
works; Recommender systems; • Computing methodologies
→ Learning latent representations.

KEYWORDS
Constrained Community Recommendation; Social Network; Graph

Neural Networks

ACM Reference Format:
Xingyi Zhang, Shuliang Xu, Wenqing Lin, and Sibo Wang. 2023. Con-

strained Social Community Recommendation. In Proceedings of the 29th

∗
This work was done when the first author did an internship at Tencent.

†
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00

https://doi.org/10.1145/3580305.3599793

ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA,

11 pages. https://doi.org/10.1145/3580305.3599793

1 INTRODUCTION
Communities exist in droves in online social networks, as the ten-

dency of people with similar interests to group together is inherent

in social networks [2]. On the one hand, users in online communi-

ties benefit from sharing information with each other. Meanwhile,

establishing connections with other members, in turn, facilitates

online services. For instance, Figure 1 shows the statistics of players

in Tencent mobile game X over a consecutive period of 7 days. We

can observe that the players that have joined a club tend to be more

active. Compared with those that have not joined any in-game club,

the relative improvement of the gaming time (resp. payment rate)

of players that have joined a club is 60.4% (resp. 48.2%) on average.

On the other hand, with the mushrooming communities in online

social networks, users have difficulties in choosing the appropriate

community to join. Therefore, practitioners, as well as researchers,

have sought to devise approaches [3] to achieve community growth

in online social networks.

In this paper, we focus on the problem of recommending commu-

nities for users to join in social networks [32], where a community

is an explicit social unit consisting of users. In particular, only user

interactions and community memberships are given in our settings.

Different from item recommendation scenarios where users can

select more than one item or conventional community recommen-

dation scenarios where users may belong to multiple communities,

we have a further constraint that each user can only join at most

one community at any time. This constraint does exist in many

real-world applications. For example, in many online games, each

player can only join at most one in-game club. Other real-world

scenarios include (i) paper submission platform can recommend

journals/conferences for researchers. Each time, researchers can

only submit their article to one publication; (ii) recruitment web-

sites can provide job seekers with valuable opportunities to find jobs

that match their interests. However, one can only accept one offer

at a time; (iii) mobile operator companies can provide personalized

recommendations for different customers. Each time, customers

can only choose one plan for each individual phone number. Com-

pared with previous recommendation problems, this constraint

severely restricts the number of positive training samples, making

this problem rather challenging.

Earlier community recommendation attempts to adopt similarity

search strategies. For instance, Spertus et al. [32] calculate dif-

ferent similarities, such as cosine distance and inverse document

frequency, to recommend communities for users. Subsequently, as

https://doi.org/10.1145/3580305.3599793
https://doi.org/10.1145/3580305.3599793

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xingyi Zhang, Shuliang Xu, Wenqing Lin, and Sibo Wang

join not join

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7

Relative Payment Rate

Day

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7

Relative Gaming Time

Day

(a) Payment rate (b) Gaming time

Figure 1: Relative improvements of two important statistics
in Tencent game X. The statistics of players that have not
joined any club are normalized to 1.

collaborative filtering (CF) plays a significant role in recommen-

dation systems, many research studies [6, 30, 36, 44] fall into this

category. These approaches are mainly evaluated on Orkut and

Youtube networks, where users may belong to multiple communi-

ties. In addition, most of these approaches require side information

such as user-item interactions or rating history and further as-

sume that each user has joined at least one community, which is

over-idealized in real scenarios.

Recently, the triumph of graph neural networks (GNNs) has at-
tracted researchers to design GNN-based approaches for recom-

mendation tasks, such as item recommendation [12, 45, 48, 56] and

group recommendation [5, 53], which mainly focus on the user-

item bipartite graph while ignoring abundant social interactions

between users. It is proven that these social connections facilitate

recommendation systems [35] as the choices of users can be highly

likely influenced by others around them [25]. Consequently, recent

social recommendation approaches [8, 49, 50] further consider so-

cial relationships between users. Nonetheless, complex attention

operations make them hard to train on large graphs, while a daily

update is usually required in real online applications [60]. Mean-

while, a few recent studies [46, 51, 59] evaluate GNN expressiveness,

achieving superb performance on link prediction and classification

tasks. Accordingly, designing expressive GNNs that can distinguish

community/subgraph structures is a promising direction in rec-

ommendation systems. Besides, previous GNN-based frameworks

only capture either local information by shallow architectures or

global information by stackingmultiple layers, while both should be

adequately captured in the community recommendation problem.

Contribution.Motivated by the above observations, we present

ComRec1, an expressive and effective GNN-based framework for

constrained social community recommendation problem. Our pro-

posed framework consists of three key components, labeling mech-

anism, global propagation, and local propagation. The first com-

ponent is a labeling mechanism that aims to empower the expres-

siveness of ComRec, which is inspired by recent subgraph rep-

resentation learning approaches [46, 59]. It has been empirically

proved [1, 46] that the ability to differentiate nodes inside and

outside subgraphs helps GNNs generate different embeddings of

non-isomorphic subgraphs, which may be undistinguishable us-

ing a standard message-passing GNN [9]. In particular, we assign

additional labels to nodes according to their relations with com-

munities, enhancing the expressiveness of the hidden representa-

tions of nodes during the feature propagation process. Besides, we

1
Constrained Social Community Recommendation.

Table 1: Frequently used notations.
Notations Descriptions

G,G𝑢 ,G𝑢𝑐 Extended graph, user-user social graph, and

user-community bipartite graph.

U, C The set of users and communities.

𝑛, 𝑛𝑐 , 𝐹 The number of users, communities, and features.

𝑨,𝑫,𝑿 Adjacent, degree, and feature matrix.

𝑯 ,𝒁 The hidden representation matrix and the

output embedding matrix.

N(𝑣) The set of out-neighbors of node 𝑣 in G.
N𝑐 (𝑣) The set of out-neighbors of node 𝑣 in the

subgraph generated by community 𝑐 and

its members.

𝛼, 𝜖 The stopping probability and threshold.

prove that ComRec is more expressive compared with conventional

message-passing GNNs [9, 11, 56].

In real-world recommendation applications, a daily update is

usually required [60], posing a challenge to model scalability as well

as training efficiency. To tackle this issue, we decouple the feature

propagation process from non-linear transformation operations,

following existing popular solutions like PPRGo [4]. In PPRGo,

it shows the potential ability of personalized PageRank (PPR) [26]
to incorporate adaptive multi-hop information of different nodes

without the explicit message-passing scheme. However, PPRGo

still requires linear running costs for the feature propagation. In

particular, it requires𝑂 ((𝑛+𝑛𝑐) (
¯𝑑+𝐹)

𝜖) propagation time complexity,

where
¯𝑑 is the average node degree, 𝜖 is the threshold parameter to

balance the computation efficiency and the approximation quality.

Such a running cost is still high for our demands as we regularly

update our model on a daily basis. In our second component, we

present a column-wised propagation strategy so that we propagate

features one by one after a column normalization. By such a strategy,

we can significantly reduce the running cost to 𝑂 (𝐹
√
𝑛+𝑛𝑐
𝜖), which

is sub-linear and super efficient. In particular, our ComRec can

finish the propagation process on graphs containing over 20 million

nodes using a CPU-only machine in 30 seconds while still achieving

superb recommendation results as we will show in our experiments.

Notice that most of the previous approaches only consider in-

corporating information within the neighborhood of the same hop

for each node while ignoring the local structures of different node

types. Due to the explicit constraint, interactions between users and

communities are exceedingly sparse in our setting. To further delin-

eate the personal influence of community members as well as make

full use of the local structural information, we adopt the third com-

ponent that aggregates member interactions via local propagation

to generate more informative representations of communities.

In our experiment, we compare ComRec against other recommen-

dation approaches on the constrained community recommendation

task. We conduct experiments on three Tencent mobile games with

four real graphs. In addition, we deploy the proposed ComRec in

one Tencent mobile game with a real recommendation application.

Extensive experiments show that our ComRec consistently outper-

forms other competitors on all datasets. Our contributions can be

summarized as follows:

Constrained Social Community Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

• We formulate a newly defined recommendation problem, con-

strained social community recommendation;

• We propose ComRec, an expressive, efficient, and effective frame-

work with three key components for the constrained social com-

munity recommendation task;

• We conduct extensive offline experiments on real-world large

graphs and shows that ComRec takes the lead by up to 12.80%

and 6.61% in the corresponding metrics, respectively.

• We deploy the proposed approach in one Tencent game with a

real application. Extensive online experiments show that Com-

Rec takes the lead by at least 2.69x times in terms of running

time and up to 29.09% in terms of the corresponding metrics.

2 PRELIMINARIES
2.1 Problem Definition
Let U = {𝑢1, ..., 𝑢𝑛} and C = {𝑐1, ..., 𝑐𝑛𝑐 } denote the sets of users
and communities, respectively, where 𝑛 is the number of users

and 𝑛𝑐 is the number of communities. We use G𝑢𝑐 = (U, C, E𝑢𝑐)
to denote an undirected user-community bipartite graph, where

an edge ⟨𝑢𝑖 , 𝑐 𝑗 ⟩ ∈ E𝑢𝑐 indicates user 𝑢𝑖 has joined in community

𝑐 𝑗 . In addition, we assume that social relationships between users

are known in advance, and we use G𝑢 = (U, E𝑢) to denote the

undirected user-user social network. Given the extended graph G =

G𝑢 ∪ G𝑢𝑐 and feature matrix 𝑿 = 𝑐𝑜𝑛𝑐𝑎𝑡𝑐𝑜𝑙 (𝑿𝑐 ,𝑿𝑢) ∈ R(𝑛+𝑛𝑐)×𝐹 ,
where 𝑿𝑐 ∈ R𝑛𝑐×𝐹 denotes community features and 𝑿𝑢 ∈ R𝑛×𝐹
denotes user features, respectively, and 𝑐𝑜𝑛𝑐𝑎𝑡𝑐𝑜𝑙 is the column

concatenation function, social community recommendation is the

task to recommend communities to users who have not joined any

community yet. Besides, we further have a constraint that each user

can only join at most one community at the same time, which is

typical in real applications. For example, in many online games,

each player can join at most one club. Table 1 lists the notations

frequently used in this paper.

Definition 1 (Constrained Social Community Recommen-

dation). Let G = G𝑢 ∪ G𝑢𝑐 be an undirected graph, 𝑿𝑢 and 𝑿𝑐

be feature matrices. In addition, each user can only join at most one
community. The goal of the constrained social community recom-
mendation task is to recommend communities for users who have not
joined a community yet under the above constraint.

Remark. Notice that in graph mining tasks like community detec-

tion, the goal is to discover groups of nodes that are more similar

or densely linked to each other than to the other nodes in complex

networks. The community is implicit in such scenarios. However, in

community recommendation, the community is explicit and created

by users in the networks. For example, in Tencent mobile game

X, a player can create a club and others can join an existing club.

In this paper, we use a community node to denote an existing com-

munity and use community to denote the subgraph generated by a

community node and its members.

2.2 Related Work
To the best of our knowledge, our work is the first to study the

constrained social community recommendation problem. Next, we

briefly review several closely related recommendation approaches.

Collaborative filtering in community recommendation. Ear-
lier attempts mainly employ CF approaches for the community

recommendation problem. CCF [6] considers both community-user

and community-description co-occurrences to compute the joint

probability distribution over the community, user, and description.

Pairwise PLSI [30] employs the pair-wise learning approach to

maximize the differences in user preference between two given

communities according to their historical records. Wang et al. [44]

incorporate the implicit user-community rating to generate tempo-

ral user-community affinity. Recently, neural CF approaches, e.g.,

[12, 45, 48], have shown the effectiveness of GNN in recommenda-

tion systems. Each community can be treated as a virtual user in the

graph G and thus GNN-based CF approaches can also be adapted to

this problem. Most of these approaches assume that each user in the

graph will join at least one community. Nevertheless, this assump-

tion becomes over-idealized in real-world applications. For example,

in Tencent game X, only around 10% of the users have joined an in-

game community. Furthermore, due to the explicit constraint, the

interactions between users and communities are extremely sparse

than the conventional community/item recommendation problems.

Social Recommendation. Employing social relationships is an-

other choice to facilitate recommendation systems. RecSSN [34]

captures the global information of each user via the relation net-

work. Later approaches mainly adopt GNNs for the social recom-

mendation task. For instance, GraphRec [8] learns user represen-

tations by aggregating features from two different perspectives.

DiffNet++ [49] presents social diffusion and interest diffusion in a

unified framework to aggregate embeddings from different aspects.

FeSoG [23] further addresses the privacy protection challenge by

employing the pseudo-labeling technique. These models mainly

adopt complex attention mechanisms and thus are hard to scale to

real-world million-node graphs.

Group Recommendation. Group recommendation is the task to

make recommendations to a group of users. The key challenge in

this task is how to infer the decision of a group of users. SIGR [54]

adopts attention mechanisms to learn the social influence of users

in different groups. GroupIM [29] maximizes the mutual informa-

tion between representations of groups and members to aggregate

user preferences. If we treat groups as virtual users in the graph,

group recommendation can be considered as the reverse problem

of community recommendation. However, since the interaction

data between users and groups is extremely sparse, existing group

recommendation approaches require additional side information,

e.g., user-item interactions, to improve the estimation accuracy of

user preferences in groups. Therefore, how to adapt group recom-

mendation approaches to the community recommendation problem

without side information is still an open problem.

3 COMREC FRAMEWORK
Recap from Section 2.1 that in constraint social community recom-

mendation task, each user can only join at most one community at

the same time. There are roughly two major challenges in this prob-

lem. Firstly, rich interactions between users and items/communities

are available in most recommendation scenarios, e.g., [6, 12, 13, 30,

44, 45, 49]. However, due to the explicit constraint in our setting,

each user can only have at most one positive sample. Furthermore,

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xingyi Zhang, Shuliang Xu, Wenqing Lin, and Sibo Wang

the majority of users may not have joined any community yet,

resulting in extremely sparse positive training data. Secondly, no

additional item information is given. Therefore, recommending

communities for users to join belongs to the cold-start problem,

which makes it rather challenging. These challenges call for a more

expressive framework to better capture the inherent information

from different perspectives of graph structures. Section 3.1 briefly

illustrates the ComRec framework. Details of the labeling mecha-

nism are provided in Section 3.2. Section 3.3 elaborates on the global

propagation process. Section 3.4 proposes the local propagation

process. Section 3.5 introduces the prediction process.

3.1 Overview
Figure 2 shows the architecture of our proposed ComRec model,

which includes three key components, i.e., labeling mechanism,

global propagation, and local propagation.

The first component is the labeling mechanism on the extended

graph G, which is generated by the user-user social network G𝑢
and the user-community bipartite graph G𝑢𝑐 . Since users are influ-
enced by both neighboring user nodes and the community node,

combining the social network with the user-community bipartite

graph provides opportunities to learn more informative representa-

tions from two different perspectives. In addition, each community

can be regarded as a subgraph in the extended graph. Since the

ability to distinguish different subgraphs is important for generat-

ing more informative representations, we incorporate a labeling

strategy to enhance the expressiveness of our ComRec.

The second component is global propagation which decouples

the feature propagation from the complicated parameter training

process. Different from previous attempts in social recommendation

systems, e.g., [8, 49, 50], which jointly train embeddings from graphs

G𝑢 and G𝑢𝑐 and then concatenate the embeddings together to

obtain the final prediction, we directly propagate information on

the extended graph, which retains rich user-user interactions for

generating the embeddings of the community nodes. To speed up

the training process on large graphs with tens of millions of users,

we design an efficient global propagation algorithm that only incurs

sub-linear time complexity.

The third component is local propagation. Notice that in previous

recommendation approaches, node features are mostly propagated

within the neighborhood of the same hop for each node without dis-

tinguishing different structures or node types. Besides, the positive

training data is extremely sparse in our setting. The local feature

propagation on subgraphs further captures the structures of each

community, aiming to generate more informative representations.

3.2 Labeling Mechanism
Graph Neural Networks (GNNs) have achieved great success in the

past few years. Most of the proposed GNNs follow the framework of

message-passing graph neural network (MPGNN) [9], which updates

the representation of a node by iteratively aggregating information

from its neighbors. The representation of node 𝑣 in the𝑘-th standard

MPGNN layer, denoted as 𝒉(𝑘)𝑣 , can be formulated as follows:

𝒂 (𝑘)𝑣 = AGGREGATE({𝒉(𝑘−1)
𝑢 : 𝑢 ∈ N (𝑣)})

𝒉(𝑘)𝑣 = COMBINE(𝒉(𝑘−1)
𝑣 , 𝒂 (𝑘)𝑣)

where N(𝑣) is the neighbors of node 𝑣 in graph G.
As discussed in [1, 46], differentiating nodes inside and out-

side subgraphs enables GNNs to generate different embeddings

of non-isomorphic subgraphs. We assign each node a label vec-

tor to indicate the affiliation information. Given a node 𝑥 and a

community 𝑐 , the label of node 𝑥 is defined as follows:

𝒍𝑥 (𝑐) =
{
1, if 𝑥 ∈ 𝑐
0, if 𝑥 ∉ 𝑐

The node 𝑥 can be either a user node or a community node. By

introducing additional labels to MPGNN, it enhances the represen-

tations of nodes in graph G. The following theorem shows that the

labeling mechanism improves the expressive power of MPGNN.

Theorem 1. Labelingmechanism enhancedmessage-passing frame-
work improves the expressiveness of the MPGNN.

Proof. Firstly, we prove that if a standard MPGNN can distin-

guish two different subgraphs, then the labeling mechanism en-

hanced framework can also generate different embeddings for them.

For the labeling mechanism enhanced message-passing framework,

the representation of the node 𝑢 at the 𝑘-th layer is:

ˆ𝒉
(𝑘−1)
𝑣 = CONCAT(𝒉(𝑘−1)

𝑣 , 𝒍𝑣) .
It is easy to verify that there always exists a mapping 𝜙 such that

𝜙 (ˆ𝒉(𝑘−1)
𝑣) = 𝒉(𝑘−1)

𝑣 .

Therefore, given a standard MPGNN frameworkM, there always

exists a labeling mechanism enhanced message-passing framework

that can produce the same embedding asM. IfM can distinguish

two non-isomorphic subgraphs, then the labeling mechanism en-

hanced message-passing framework can also generate different

embeddings for these two subgraphs.

Secondly, we need to show that there exist pair of non-isomorphic

graphs that MPGNN cannot distinguish while labeling mecha-

nism enhanced message-passing framework can. Consider two

non-isomorphic graphs G1 and G2 in Fig. 3, where 𝑐1 and 𝑐2 denote

community nodes. Subgraphs with blue nodes and edges between

them indicate a community. No additional feature information is

given. For a standard MPGNN, the representations of node 𝑢 and

node 𝑣 will be the same since the computational subtrees gener-

ated by their neighborhood are homogeneous, see Fig. 3(b). The

representations of other nodes will also be the same if we simply

use an MPGNN to aggregate information. However, if additional

label information is incorporated into the message-passing frame-

work, it can distinguish 𝑢 from 𝑣 because 𝑢 has three in-community

neighbors while 𝑣 has three neighbors outside the community. □

Relaxation. Even though the labeling mechanism can improve

the expressive power of MPGNN, it requires additional cost since

we further consider a one-hot label vector. If we utilize the batch

training strategy, i.e., we jointly incorporate labels to a batch of

nodes and then propagate information among edges, the labels

may become inconsistent in different batches. To tackle this issue,

we only keep a one-dimensional label for each node. In specific,

if a node belongs to one community, then it will have the label

1; otherwise, it will have the label 0. Notice that Theorem 1 still

holds after relaxation. In addition, as discussed in [46], adding labels

Constrained Social Community Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

0

1

1

0

1

0

𝒏
+
𝒏𝒄

𝑭 + 𝟏

Labeling mechanism

Local UpdateExtended graph

User 𝒖𝒊

Global Propagation

Community 𝒄𝒋

Subgraph Propagation

MLP

MLP
Prediction

User embedding

Community embedding

User node
Community node

Figure 2: The overall framework of ComRec, which consists of three key components: labeling mechanism, global propagation,
and local propagation. The arrows show the direction of feature propagation. Each dashed area in the local update part and the
subgraph propagation part is a subgraph consisting of nodes within a community.

(a): Two graphs (b): Computational
subtrees of node 𝑢 and 𝑣

(c): Labeling
mechanism

𝑢 𝑢
𝒢! 𝑢

𝑐!

𝑣 𝑣

𝒢" 𝑣

𝑐"

Figure 3: Two graphs G1 and G2 with communities (blue) gen-
erated by communities 𝑐1, 𝑐2, and theirmembers, respectively.
The computational subtrees of node 𝑢 and 𝑣 are different in
standard MPGNN andMPGNNwith the labeling mechanism.

cannot avoid inconsistencies between batches and the relaxation

here is a trade-off between efficiency and expressiveness.

3.3 Global Feature Propagation
According to the organization principle of social networks [25], the

preferences of users are highly likely influenced by their directly

connected nodes. The global propagation component aims to incor-

porate multi-hop information into the representations of each node

from the extended graph G with additional social information from

G𝑢 . As standard GNNs [11, 18] are computationally prohibitive

on large graphs, some research works [4, 19] suggest decoupling

the non-linear transformation from the feature propagation. In

addition, LightGCN [12] empirically reveals that non-linear trans-

formation operation will unnecessarily complicate the model and

even degrade the effectiveness of recommendation models. There-

fore, we follow these approaches and calculate the disentangled

feature propagation in the pre-computation process.

Recent studies on node representation learning [7, 52, 55, 61]

have shown that PPR plays an important role in capturing graph in-

formation. Based on this observation, recent studies [4, 38] propose

approximate algorithms for feature propagation. However, to cal-

culate the approximate PPR values by adopting existing algorithms

[14, 15, 20, 24, 39–43, 47], PPRGo [4] still requires linear costs for

Algorithm 1: Global-Feature-Propagation
Input: Graph G, feature 𝑿 , threshold 𝜖 , stopping

probability 𝛼

Output: Representation 𝑯
1 Initialize 𝑯 ← 0, 𝑿 ← Column-normalized(𝑿)
2 for 𝑘 ∈ {1, ..., 𝐹 + 1} do
3 while ∃𝑢 ∈ U ∪ C such that 𝑿𝑢,𝑘 > 𝜖 · 𝑑𝑢 do
4 𝑯𝑢,𝑘 ← 𝑯𝑢,𝑘 + 𝛼 · 𝑿𝑢,𝑘

5 for 𝑣 ∈ N (𝑢) do
6 𝑿 𝑣,𝑘 ← 𝑿 𝑣,𝑘 + (1 − 𝛼) ·

𝑿𝑢,𝑘

𝑑𝑢

7 𝑿𝑢,𝑘 ← 0

8 return 𝑯

feature propagation, which is still too expensive for large graphs.

AGP [38] assumes that the given feature vector 𝒙 is 𝐿1-normalized,

i.e.,

∑𝑛+𝑛𝑐
𝑖=1

𝒙𝑖 = 1, where each dimension corresponds to the feature

value of a node in the graph. Then, the running cost can be bounded

by 𝑂 (𝐹/𝜖), which is independent of the graph size. However, in

many cases, such limited propagation is insufficient. To tackle this

issue, we make a trade-off by incorporating a column-wised feature

propagation with 𝐿2 normalization, which runs in 𝑂 (𝐹√𝑛 + 𝑛𝑐/𝜖)
time and gains a balance between efficiency and effectiveness.

Algorithm 1 shows the pseudo-code of the global feature prop-

agation algorithm. Given a column of features 𝑿
:,𝑘 , the output

representation vector 𝑯
:,𝑘 is maintained to store the portion of

feature information propagated to each node via 𝛼-discount ran-

dom walks, where at each propagation step, the current feature

information either stores at the current node with 𝛼 probability or

randomly propagates to an out-neighbor of the current node with

(1 − 𝛼) probability. Besides, the vector 𝑿
:,𝑘 indicates the portion

of feature information currently propagated at each node but has

not been stored yet. Thus, if the entries of 𝑿
:,𝑘 are all zero values,

it returns the exact propagation results.

Initially, the entries of𝑯
:,𝑘 are all zero (Line 1), indicating that the

feature information of each node has not been stored yet.We further

normalize the feature matrix before the propagation process. Then,

the features are propagated separately along each dimension (Line

2). For the𝑘-th column of the feature matrix, if any entry𝑿𝑢,𝑘 of the

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xingyi Zhang, Shuliang Xu, Wenqing Lin, and Sibo Wang

feature matrix is above 𝜖 · 𝑑𝑢 (Line 3), where 𝜖 is a given threshold

and 𝑑𝑢 = |N (𝑢) | is the out-degree of node 𝑢, a push operation is

invoked on 𝑢 to propagate features to its neighbors via 𝛼-discount

random walks (Lines 4-7). In particular, it first converts 𝛼 · 𝑿𝑢,𝑘

to 𝑯𝑢,𝑘 (Line 4). To explain, 𝛼 portion of the feature information

𝑿𝑢,𝑘 stores at the current node 𝑢. Next, the remaining (1 − 𝛼)
portion of the feature information 𝑿𝑢,𝑘 will evenly propagate to

the out-neighbors of the current node 𝑢 (Lines 5-6). Thus, for each

𝑣 that is an out-neighbor of 𝑢, the feature 𝑯 𝑣,𝑘 is increased by

(1−𝛼) ·𝑿𝑢,𝑣/𝑑𝑢 . After the push operation, the feature information

𝑿𝑢,𝑘 is set to zero (Line 7), since 𝑿𝑢,𝑘 has been either propagated

to neighbors or stores at node 𝑢. This algorithm will terminate

when there exists no node 𝑢 such that 𝑿𝑢,𝑘 is larger than 𝜖 · 𝑑𝑢 .
The following theorem shows that with the global propagation

algorithm, the representations 𝑯 can be generated in sub-linear

time, and the proof can be found in Appendix.

Theorem 2. Generating the representation matrix 𝑯 using Algo-
rithm 1 takes𝑂 (𝐹√𝑛 + 𝑛𝑐/𝜖) time complexity given that the original
feature matrix 𝑿 is 𝐿2-normalized by each column.

3.4 Local Feature Propagation
Different from user-item recommendation tasks, the community

nodes and their members constitute explicit subgraphs, providing

additional local structural information. Furthermore, the positive

training data is extremely sparse due to the user constraint. To

generate more informative representations of communities, we

present the local computation component to better capture users’

preferences in the same community. The local feature propaga-

tion of ComRec consists of two steps: local update and subgraph

propagation.

Local update. Pooling functions are common methods in many

graph tasks, such as graph classification [57, 58]. The embeddings

of nodes within the graph are combined together to generate the

graph representation:

𝑯𝑐 = pooling({𝑯𝑢 |∀𝑢 ∈ 𝑐}),

where the pooling functions can be𝑚𝑖𝑛,𝑚𝑎𝑥 , and 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 func-

tions. In ComRec, we extend this idea to generate the represen-

tations of the community nodes. Thus, the representation of the

community node 𝑐 is as follows:

𝑯𝑐 = 𝑯𝑐 +
∑︁
𝑢∈𝑐

𝛼𝑢𝑯𝑢 ,

where 𝛼𝑢 is an individualized preference weight of user 𝑢 in the

community 𝑐 and can be either calculated by attention mechanism

with trainable weights or set to be a hyper-parameter. In our imple-

mentation, we find that uniform aggregation is enough to achieve

satisfactory recommendation results, and thus we set 𝛼𝑢 = 1, which

also avoids weight updating costs. With the local update step, the

representation of the community node will capture more member

preference information, which can also be regarded as the prefer-

ence summarization of this community.

Subgraph propagation. The local update process is designed to

incorporate user preference in the community representation while

it does not capture the close relationships between in-community

members. Since the explicit subgraphs that consist of members

and communities provide additional local structural information,

to make full use of such information, we further propagate node

representations locally, which can smooth the node representations

within each community. Specifically, we adopt the normalized sum

aggregator in each community and remove the non-linear transfor-

mation as [12]. The 𝑘-th layer representation of node 𝑖 ∈ 𝑐 during
the local propagation is defined as:

𝑯 𝑖 =
∑︁

𝑗 ∈N𝑐 (𝑖)

1√︁
|N𝑐 (𝑖) |

√︁
|N𝑐 (𝑗) |

𝑯 𝑗 ,

whereN𝑐 (𝑖) is the neighbor set of node 𝑖 in the subgraph generated

by community 𝑐 . Notice that no self-loop is considered during the

subgraph propagation process since 𝛼-discounted random walks

have been utilized during the global feature propagation.

3.5 Training and Prediction
After two propagation steps, we apply a multi-layer perceptron
(MLP) to get the final embeddings of each node, i.e., 𝒁 = MLP(𝑯).
The final prediction score is defined as the inner product of the user

and the community embeddings:

𝑟𝑢𝑐 = 𝒁𝑇
𝑢𝒁𝑐 . (1)

The communities with top-𝐾 scores will be returned as the final

recommendation results for users.

Loss function. In our ComRec, the trainable parameters are only

the weight matrices of MLP. Therefore, it supports efficient mini-

batch training and scale to large graphs. We select the standard

Bayesian Personalized Ranking loss [28] tomaximize the differences

between positive pairs and negative pairs:

L = −
∑︁

𝑢∈U∪C
log (𝜎 (𝑟𝑢𝑐 − 𝑟𝑢𝑐′)) + | |𝑾 | |22,

where 𝑐 is the positive sample and 𝑐 ′ is the negative sample, 𝜎 is

the sigmoid function, and𝑾 denotes all trainable parameters.

Training samples. The positive samples are the observed affili-

ations of users. For the negative samples, if we directly sample a

number of random communities for each user, the chance of any of

these communities being related to the user is small. Therefore, we

adopt the hard negative sampling strategy [27, 56] to get more rela-

tive negative samples for each user. Specifically, for each user 𝑢, we

calculate its single source PPR values and select the communities

with the top-5 PPR scores as hard negative samples.

Candidate selection. Since each user can only join at most one

community, given a certain user 𝑢, most of the communities are

irrelative to 𝑢 and unlikely to be valid for the recommendation. To

make the prediction more reasonable, we first select a candidate

set for each user 𝑢 according to the game logs and user profile,

such as the communities that other players in the same game have

joined, and the communities that a friend of 𝑢 has joined. After

the candidate selection, we only recommend communities in the

candidate set of each user via Equation 1.

4 EXPERIMENTS
We compare our ComRec against alternative solutions on the con-

strained social community recommendation task.

Constrained Social Community Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 2: Dataset statistics.

Game Players Clubs Edges Features

X-1 5,018,992 116,080 24,802,796 38

X-2 4,868,207 120,805 18,422,695 38

Y 5,652,790 77,953 80,581,339 28

Z 1,722,069 59,545 12,181,427 26

Table 3: Experimental results on X-1.
Dataset X-1

Method Hit@10 NDCG@10 Total Time(s)

DistNE 0.50623 0.26183 3440

MLP 0.48365 0.24273 1037
LightGCN 0.49239 0.25589 1431

LightGCN-e 0.53181 0.28496 1711

GraphRec 0.51006 0.25596 80604

AutointCL 0.50994 0.25546 26352

AttentionNet 0.52023 0.27782 143605

ComRec 0.56343 0.30157 1239

Table 4: Experimental results on X-2.
Dataset X-2

Method Hit@10 NDCG@10 Total Time(s)

DistNE 0.51093 0.24610 3525

MLP 0.48097 0.23563 1246
LightGCN 0.51097 0.25325 1544

LightGCN-e 0.52442 0.26334 1802

GraphRec 0.49843 0.23498 83043

AutointCL 0.49982 0.23515 30817

AttentionNet 0.51093 0.24594 115910

ComRec 0.55544 0.29705 1337

4.1 Experimental Settings
Datasets. Since no public dataset considers the constraint in our

setting, in this paper, we evaluate our ComRec and several com-

petitors on three Tencent mobile strategy role-playing game (SRPG)
datasets, denoted by X, Y, and Z, respectively. Besides, the dataset

from game X is further divided into X-1 and X-2 according to their

mobile platforms. For graphs X-1 and X-2, we construct (i) the so-
cial graphs by taking each daily active user (DAU) in the game as a

user node and the friendship between two users as an edge; (ii) the
user-community graph by taking the club that at least one DAU

has joined as a community node, the DAU in the club as a user

node, and the memberships between the user nodes and the club

nodes as edges. For graph Y and graph Z, we construct (i) the social
graphs by all users and their friendships; (ii) the bipartite graphs
by all users, clubs, and their memberships. The statistics of these

datasets are listed in Table 2.

Competitors. We evaluate ComRec against 7 competitors, in-

cluding embedding methods, collaborative filtering methods, con-

trastive learning methods, and social recommendation methods. We

obtain the source code of these competitors from GitHub and evalu-

ate them with default parameter settings suggested by their authors

unless otherwise specified. We list these methods as follows:

• DistNE [21]: it is a distributed embedding method based on a

graph partitioning algorithm [22]. The embeddings are computed

Table 5: Experimental results on Y.
Dataset Y

Method Hit@5 NDCG@5 Total Time(s)

DistNE 0.21342 0.1262 5724

MLP 0.19430 0.11288 1684
LightGCN 0.23763 0.1384 1724

LightGCN-e 0.20289 0.11466 2156

GraphRec 0.19353 0.11013 125376

AutointCL 0.19509 0.12718 53696

AttentionNet 0.21431 0.13661 216888

ComRec 0.25049 0.14712 2254

Table 6: Experimental results on Z.

Dataset Z

Method Hit@5 NDCG@5 Total Time(s)

DistNE 0.49001 0.33243 1449

MLP 0.49499 0.31126 470
LightGCN 0.47043 0.32158 688

LightGCN-e 0.46796 0.32167 890

GraphRec 0.43252 0.3006 68548

AutointCL 0.39468 0.29250 15232

AttentionNet 0.38537 0.28973 29193

ComRec 0.52805 0.34412 887

Table 7: The percentage of friends in the same club.

Graph X-1 X-2 Y Z

Portion 0.59% 0.82% 0.34% 0.50%

by node2vec [10]. Then, the embeddings are fed into a multi-

layer perceptron as features to obtain the pair-wise scores;

• MLP: it directly adopts a multi-layer perceptron to train embed-

dings using features;

• AutoIntCL: it combines the attention-based recommendation

approach autoint
2
[31] with the contrastive learning loss func-

tion, aiming to maximize the distances between negative pairs

and minimize the distances between positive pairs. It has been

deployed in real Tencent applications;

• AttentionNet: it is a deep model [16] with the multi-head self-

attention mechanism [37]. It focuses more on the important

features and reduces the impact of irrelevant features. It has

been deployed in real Tencent applications.

• LightGCN
3
[12]: it is one of the state-of-the-art neural collabo-

rative filtering approaches that can scale to large graphs with

millions of nodes;

• LightGCN-E: it denotes an extended LightGCN model that fur-

ther considers the social network as input;

• GraphRec
4
[8]: it is one of the state-of-the-art social recommen-

dation approaches which takes the extended graph as input and

generated embeddings by attention-based message-passing.

Parameter settings. We set 𝛼 = 0.1, 𝜖 = 10
−6

(introduced in

Section 3.3). The depth of the MLP is 3 and the size of the hidden

layer is 64. We select 5 hard negative samples for each user existing

in positive samples. Since the restrictions for joining clubs in game

Y and game Z are more strict than that in game X, we set the

2
https://github.com/DeepGraphLearning/RecommenderSystems/tree/master/featureRec

3
https://github.com/kuandeng/LightGCN

4
https://github.com/wenqifan03/GraphRec-WWW19

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xingyi Zhang, Shuliang Xu, Wenqing Lin, and Sibo Wang

Table 8: Ablation study on X-1.
Method Hit@10 Δ NDCG@10 Δ

ComRec-lm 0.51003 -9.48% 0.27941 -7.35%

ComRec-lu 0.48018 -14.78% 0.28960 -3.97%

ComRec-sp 0.54280 -3.66% 0.28413 -5.78%

ComRec 0.56343 - 0.30157 -

Table 9: Ablation study on Z.
Method Hit@5 Δ NDCG@5 Δ

ComRec-lm 0.50793 -3.81% 0.32653 -5.11%

ComRec-lu 0.50159 -5.01% 0.33922 -1.42%

ComRec-sp 0.50675 -4.03% 0.33519 -2.59%

ComRec 0.52805 - 0.34412 -

candidate set sizes of graphs X-1, X-2, Y, and Z to be 100, 100, 50,

and 30, respectively.

4.2 Offline Evaluation
We first conduct experiments on the above-mentioned four datasets.

We randomly hide 10% of the user-community edges for testing

and train the embedding vectors on the rest of the graph, i.e., the

whole user-user social graph and 90% of the user-community graph.

For each user 𝑢, the candidate set is generated by the communities

according to the following priority: (i) the ground-truth community

that user 𝑢 has joined; (ii) the communities that other players in

the same game with user 𝑢 have joined; (iii) the communities that

at least one friend of user 𝑢 has joined; (iv) randomly selected

communities. Once the number of candidates equals the default

number, the candidate selection process will terminate. Given a

node pair (𝑢, 𝑐) in the candidate set, we compute a score for (𝑢, 𝑐)
based on the embedding vectors generated by each model, and

return the top-𝐾 results to evaluate model performances according

to the predicted scores. Since the sizes of the candidate set in game

X, game Y, and game Z are distinct, we set 𝐾 = 10, 10, 5, 5 on graphs

X-1, X-2, Y, and Z, respectively.

Table 3 and Table 4 show the experimental results and the total

running time (including training and prediction) of all methods on

two graphs of game X. We make the following observations. Firstly,

on graphs X-1 and X-2, LightGCN-e consistently outperforms Light-

GCN in terms of Hit@10 and NDCG@10metrics. This demonstrates

that directly applying the collaborative filtering approach on the

user-community bipartite graph may lose potential information in

the social network. LightGCN-e performs information propagation

on the extended graph and thus alleviates the training data sparse

issue, which shows the effectiveness of incorporating social rela-

tionships between users into model training. Secondly, since the

training data is extremely sparse compared with traditional recom-

mendation tasks, GNNmodels with complex attention computation

may be over-parameterized and thus overfits the training data, los-

ing the generalization ability. Thirdly, our ComRec consistently

outperforms other competitors on graph X-1 and graph X-2 by a

large margin. Specifically, ComRec takes the lead by at least 5.95%

and 5.92% in terms of hit rate on graphs X-1 and X-2, respectively;

at least 5.83% and 12.80% in terms of NDCG on graphs X-1 and X-2,

respectively. Fourthly, attention-based approaches, GraphRec, Au-

tointCL, and transferCL, take more than an order of magnitude time

than other approaches, demonstrating that the complex attention

0.45

0.50

0.55

0.60

0.65

10
-8

10
-7

10
-6

10
-5

Hit rate

ε

0.40

0.45

0.50

0.55

0.60

10
-8

10
-7

10
-6

10
-5

Hit rate

ε

(a) Graph X-1 (b) Graph Z

Figure 4: Varying 𝜖 on graph X-1 and Z.

0.50

0.52

0.54

0.56

0.58

0.60

0.1 0.3 0.5 0.7 0.9

Hit rate

α

0.40

0.45

0.50

0.55

0.60

0.1 0.3 0.5 0.7 0.9

Hit rate

α

(a) Graph X-1 (b) Graph Z

Figure 5: Varying 𝛼 on graph X-1 and Z.

mechanism may not be appropriate for large graphs with millions

of nodes. Compared with the second-best method, LightGCN-e,

our ComRec saves 27.59% and 25.80% time on graphs X-1 and X-2,

respectively. In addition, the global propagation process of ComRec

only takes 6.7s and 6.2s on graphs X-1 and X-2, respectively.

Table 5 and Table 6 show the experimental results of all methods

on two graphs of games Y and Z. LightGCN outperforms LightGCN-

e on these two graphs. Table 7 further summarizes the portion of

friend pairs in the same club among all friend edges. As we can

observe, the values on graphs Y and Z are much lower than that

on graphs X-1 and X-2. Therefore, we conclude that graphs Y and

Z show more heterogeneous properties and only propagating fea-

tures on the extended graph is not enough to obtain satisfactory

results on such graphs. Our ComRec further incorporates local

structural information into representations and consistently out-

performs other competitors on graphs Y and Z by up to 7.70%

and 6.68%, respectively, in comparable running time. These results

demonstrate the effectiveness and efficiency of our ComRec.

Ablation study. Next, we show the importance of each component

in our ComRec. We use ComRec-lm to indicate the algorithm that

removes the labeling mechanism component, ComRec-lu to indi-

cate the algorithm that removes the local update component, and

ComRec-sp to indicate the algorithm that removes the subgraph

propagation component. Table 8 and Table 9 list the results of these

approaches on graphs X-1 and Z, respectively. As we can observe,

ComRec-lm, ComRec-lu, and ComRec-sp show sub-optimal results

on X-1 and Z in terms of both hit rate and ndcg metrics, while our

ComRec achieves the best performance. Moreover, ComRec bene-

fits from the local update component most in terms of hit rate and

benefits from the labeling mechanism component most in terms of

ndcg metric. These results demonstrate the effectiveness of each

component in our framework.

Parameter analysis.We conduct experiments to analyze the ef-

fect of parameters 𝛼 and 𝜖 on graphs X-1 and Z in terms of hit

rate, results on other graphs show similar trends. Figure 4 shows

the recommendation results as we vary 𝜖 from 10
−8

to 10
−5
. As

𝜖 approaches 10
−8
, we obtain more accurate representations; as 𝜖

approaches 10
−5
, less information will be propagated in the graph.

We observe that when 𝜖 = 10
−6
, ComRec achieves the best results

and thus 𝜖 is set to be 10
−6

in our experiments. Figure 5 shows

Constrained Social Community Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 10: The average statistics of the graphs in game X.
Game Type Players Clubs Edges

X SRPG 20.95million 0.28million 0.16billion

the recommendation results as we vary 𝛼 from 0.1 to 0.9. As 𝛼 ap-

proaches 0.1, multi-hop information will be incorporated into the

representations; as 𝛼 approaches 0.9, it will focus more on one-hop

neighbors during the feature propagation, which results in perfor-

mance degradation. Hence, we set 𝛼 = 0.1 in our experiments.

5 DEPLOYMENT
We deploy the proposed ComRec in Tencent mobile game X with a

real application that recommends in-game clubs for each player.

5.1 Setup
Firstly, we select active users that have game records in the past

two weeks according to their game logs. Then, we construct (i) the
social graph by taking active users as nodes and the friendships

between them as user-user edges; (ii) the bipartite graph by taking

active users and existing clubs as nodes, the memberships between

users and clubs as user-community edges. Besides, we update the

recommendation results of players every day by re-running the

algorithms from scratch on the latest dataset and report the results

over a consecutive period of 7 days. Table 10 shows the average

statistics of the graphs in game X. We compare ComRec against

several alternative approaches that have been deployed for this

recommendation application as follows:

• Random: it randomly recommends clubs for each player;

• AutointCL: it adopts the same algorithm as in Section 4.2.

• AutointCL-M: it applies distributed AutointCL algorithm on the

candidate set generated by a multi-retrieval approach, i.e., its

candidate sets are different from that of AutointCL.

• AttentionNet: it adopts the same algorithm as in Section 4.2.

For each method, the candidate set of each user consists of the

clubs that other players in the same game have joined according

to the game logs except for AutointCL-M, which considers multi-

ple types of clubs to generate the candidate sets. After that, each

method will generate a recommendation list for each user following

the same setting introduced in Section 4.1. These approaches are

evaluated by the online A/B testing [17, 33] that randomly assigns

each approach to a fraction of users, i.e., the players receive the

recommendations from different approaches.

5.2 Online Evaluation
We provide an in-game module to recommend an ordered list of

clubs to each player. When the player 𝑢 accesses the club recom-

mendation module in game X, 𝑢 will see one recommended club

each time. This will generate an exposure record in recommendation

logs and 𝑢 can decide to click or not. If 𝑢 is not interested in the

current club, 𝑢 can switch to the next recommended result. Once

user 𝑢 clicks the recommended club, it will send a join request and

generate a click record in recommendation logs. If the request needs

approval, the administrators of the club can decide to accept the

request or reject it. Besides, the user 𝑢 needs to satisfy the role level

and rank level requirements of the club 𝑐 if 𝑢 wants to join 𝑐 .

Table 11: Average pair-wise CR and overall ESR on game X.

Method CR ESR

Random 0.03228 0.04930

AutointCL 0.03774 0.05469

AutointCL-M 0.03940 0.05493

AttentionNet 0.03806 0.05493

ComRec 0.04030 0.05736

AutointCL-MAutointCL

Random

ComRec

AttentionNet

2.0

2.4

2.8

3.2

1 2 3 4 5 6 7

ESR(%)

Day

10
3

10
4

10
5

10
6

1 2 3 4 5 6 7

Running time(s)

Day

(a) Pair-wise ESR (b) Running time

Figure 6: Pair-wise ESR and running time on game X.

We evaluate ComRec and other competitors for club recommen-

dation by three metrics: (i) pair-wise click rate (CR), the fraction
of recommended records that are clicked by users; (ii) pair-wise
exposure success rate (ESR), the fraction of recommended records

that users successfully join the club; (iii) overall ESR, the fraction
of users that successfully join one recommended club.

Table 11 shows the average pair-wise CR and overall ESR of

each method in a consecutive period of 7 days on game X. Firstly,

our ComRec takes the lead by at least 2.28% compared with other

approaches in terms of average pair-wise CR, which shows that

players are more interested in the clubs recommended by ComRec.

Secondly, our ComRec takes the lead by 4.40% compared with the

second-best approach in terms of overall ESR, demonstrating that

ComRec can generate recommendation lists of higher quality than

other approaches. Figure 6 illustrates the pair-wise ESR and running

time of each method in a consecutive period of 7 days. As we can

observe, our ComRec consistently outperforms other competitors

every single day. In particular, our ComRec takes the lead by at

least 6.61% and up to 29.09% in terms of the average pair-wise

ESR. Besides, compared with AutointCL and AttentionNet, our

ComRec significantly reduces the running time by at least an order

of magnitude. These results again demonstrate the effectiveness

and efficiency of ComRec.

6 CONCLUSION
In this paper, we focus on the social community recommendation

problem with additional constraint in real-world applications. To

solve this problem, we present ComRec, an effective and efficient

recommendation framework by capturing both global and local

information. Extensive experiments demonstrate the effectiveness

and efficiency of our ComRec.

ACKNOWLEDGMENTS
This work is supported by the Hong Kong RGC ECS grant (No.

24203419), RGC GRF grant (No. 14217322), RGC CRF grant (No.

C4158-20G), Hong Kong ITC ITF grant (No. MRP/071/20X), NSFC

grant (No. U1936205), and CUHK Direct Grant (No. 4055181).

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xingyi Zhang, Shuliang Xu, Wenqing Lin, and Sibo Wang

REFERENCES
[1] Emily Alsentzer, Samuel Finlayson, Michelle Li, and Marinka Zitnik. 2020. Sub-

graph neural networks. In NeurIPS. 8017–8029.
[2] Aris Anagnostopoulos, Ravi Kumar, and Mohammad Mahdian. 2008. Influence

and correlation in social networks. In SIGKDD. 7–15.
[3] Lars Backstrom, Dan Huttenlocher, Jon Kleinberg, and Xiangyang Lan. 2006.

Group Formation in Large Social Networks: Membership, Growth, and Evolution.

In SIGKDD. 44–54.
[4] Aleksandar Bojchevski, Johannes Klicpera, Bryan Perozzi, Amol Kapoor, Martin

Blais, Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. 2020.

Scaling Graph Neural Networks with Approximate PageRank. In SIGKDD. 2464–
2473.

[5] Da Cao, Xiangnan He, Lianhai Miao, Yahui An, Chao Yang, and Richang Hong.

2018. Attentive Group Recommendation. In SIGIR. 645–654.
[6] Wen-Yen Chen, Dong Zhang, and Edward Y. Chang. 2008. Combinational Col-

laborative Filtering for Personalized Community Recommendation. In SIGKDD.
115–123.

[7] Xinyu Du, Xingyi Zhang, Sibo Wang, and ZengFeng Huang. 2023. Efficient

Tree-SVD for Subset Node Embedding over Large Dynamic Graphs. PACMMOD
1, 1 (2023), 96:1–96:26.

[8] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.

2019. Graph neural networks for social recommendation. In WWW. 417–426.

[9] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E.

Dahl. 2017. NeuralMessage Passing for QuantumChemistry. In ICML. 1263–1272.
[10] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for

networks. In SIGKDD. 855–864.
[11] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation

Learning on Large Graphs. In NIPS.
[12] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng

Wang. 2020. LightGCN: Simplifying and Powering Graph Convolution Network

for Recommendation. In SIGIR. 639–648.
[13] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[14] Guanhao Hou, Xingguang Chen, Sibo Wang, and Zhewei Wei. 2021. Massively

parallel algorithms for personalized pagerank. PVLDB 14, 9 (2021), 1668–1680.

[15] Guanhao Hou, Qintian Guo, Fangyuan Zhang, Sibo Wang, and Zhewei Wei. 2023.

Personalized PageRank on Evolving Graphs with an Incremental Index-Update

Scheme. PACMMOD 1, 1 (2023), 25:1–25:26.

[16] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

2017. Densely connected convolutional networks. In CVPR. 4700–4708.
[17] Shixun Huang, Wenqing Lin, Zhifeng Bao, and Jiachen Sun. 2022. Influence

Maximization in Real-World Closed Social Networks. PVLDB 16, 2 (2022), 180—-

192.

[18] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with

Graph Convolutional Networks. In ICLR.
[19] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2019. Pre-

dict then Propagate: Graph Neural Networks meet Personalized PageRank. In

ICLR.
[20] Wenqing Lin. 2019. Distributed algorithms for fully personalized pagerank on

large graphs. In WWW. 1084–1094.

[21] Wenqing Lin. 2021. Large-Scale Network Embedding in Apache Spark. In SIGKDD.
3271–3279.

[22] Wenqing Lin, Feng He, Faqiang Zhang, Xu Cheng, and Hongyun Cai. 2020.

Initialization for Network Embedding: A Graph Partition Approach. InWSDM.

367–374.

[23] Zhiwei Liu, Liangwei Yang, Ziwei Fan, Hao Peng, and Philip S Yu. 2022. Federated

social recommendation with graph neural network. TIST 13, 4 (2022), 1–24.

[24] Siqiang Luo, Xiaokui Xiao, Wenqing Lin, and Ben Kao. 2019. Efficient Batch

One-Hop Personalized PageRanks. In ICDE. 1562–1565.
[25] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:

Homophily in social networks. Annual review of sociology (2001), 415–444.

[26] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The

PageRank citation ranking: bringing order to the web. (1999).

[27] Steffen Rendle and Christoph Freudenthaler. 2014. Improving pairwise learning

for item recommendation from implicit feedback. In WSDM. 273–282.

[28] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In UAI.
452–461.

[29] Aravind Sankar, Yanhong Wu, Yuhang Wu, Wei Zhang, Hao Yang, and Hari

Sundaram. 2020. Groupim: A mutual information maximization framework for

neural group recommendation. In SIGIR. 1279–1288.
[30] Amit Sharma and Baoshi Yan. 2013. Pairwise Learning in Recommendation:

Experiments with Community Recommendation on Linkedin. In RecSys. 193–
200.

[31] Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang,

and Jian Tang. 2019. Autoint: Automatic feature interaction learning via self-

attentive neural networks. In CIKM. 1161–1170.

[32] Ellen Spertus, Mehran Sahami, and Orkut Buyukkokten. 2005. Evaluating sim-

ilarity measures: a large-scale study in the orkut social network. In SIGKDD.
678–684.

[33] Diane Tang, Ashish Agarwal, Deirdre O’Brien, and Mike Meyer. 2010. Overlap-

ping experiment infrastructure: More, better, faster experimentation. In SIGKDD.
17–26.

[34] Jiliang Tang, Charu Aggarwal, and Huan Liu. 2016. Recommendations in signed

social networks. In WWW. 31–40.

[35] Jiliang Tang, Xia Hu, and Huan Liu. 2013. Social recommendation: a review.

SNAM 3, 4 (2013), 1113–1133.

[36] Vishvas Vasuki, Nagarajan Natarajan, Zhengdong Lu, and Inderjit S. Dhillon.

2010. Affiliation Recommendation Using Auxiliary Networks. In RecSys. 103–110.
[37] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

You Need. In NeurIPS. 6000–6010.
[38] Hanzhi Wang, Mingguo He, Zhewei Wei, Sibo Wang, Ye Yuan, Xiaoyong Du, and

Ji-Rong Wen. 2021. Approximate graph propagation. In SIGKDD. 1686–1696.
[39] Hanzhi Wang, Zhewei Wei, Junhao Gan, Sibo Wang, and Zengfeng Huang. 2020.

Personalized pagerank to a target node, revisited. In SIGKDD. 657–667.
[40] Sibo Wang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. 2016. Hubppr:

effective indexing for approximate personalized pagerank. PVLDB 10, 3 (2016),

205–216.

[41] Sibo Wang and Yufei Tao. 2018. Efficient algorithms for finding approximate

heavy hitters in personalized pageranks. In SIGMOD. 1113–1127.
[42] Sibo Wang, Renchi Yang, Runhui Wang, Xiaokui Xiao, Zhewei Wei, Wenqing Lin,

Yin Yang, and Nan Tang. 2019. Efficient algorithms for approximate single-source

personalized pagerank queries. TODS 44, 4 (2019), 1–37.
[43] Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. 2017. FORA:

Simple and Effective Approximate Single-Source Personalized PageRank. In

SIGKDD. 505–514.
[44] Xin Wang, Roger Donaldson, Christopher Nell, Peter Gorniak, Martin Ester, and

Jiajun Bu. 2016. Recommending Groups to Users Using User-Group Engagement

and Time-Dependent Matrix Factorization. In AAAI. 1331–1337.
[45] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural Graph Collaborative Filtering. In SIGIR. 165–174.
[46] Xiyuan Wang and Muhan Zhang. 2022. GLASS: GNN with Labeling Tricks for

Subgraph Representation Learning. In ICLR.
[47] Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Shuo Shang, and Ji-Rong

Wen. 2018. Topppr: top-k personalized pagerank queries with precision guaran-

tees on large graphs. In SIGMOD. 441–456.
[48] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian, and

Xing Xie. 2021. Self-supervised graph learning for recommendation. In SIGIR.
726–735.

[49] Le Wu, Junwei Li, Peijie Sun, Richang Hong, Yong Ge, and Meng Wang. 2020.

Diffnet++: A neural influence and interest diffusion network for social recom-

mendation. TKDE (2020).

[50] Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang, and Meng Wang. 2019.

A neural influence diffusion model for social recommendation. In SIGIR. 235–244.
[51] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How powerful

are graph neural networks. In ICLR.
[52] Renchi Yang, Jieming Shi, Xiaokui Xiao, Yin Yang, and Sourav S. Bhowmick.

2020. Homogeneous Network Embedding for Massive Graphs via Reweighted

Personalized PageRank. PVLDB 13, 5 (2020), 670–683.

[53] Hongzhi Yin, Qinyong Wang, Kai Zheng, Zhixu Li, Jiali Yang, and Xiaofang

Zhou. 2019. Social influence-based group representation learning for group

recommendation. In ICDE. 566–577.
[54] Hongzhi Yin, Qinyong Wang, Kai Zheng, Zhixu Li, Jiali Yang, and Xiaofang

Zhou. 2019. Social influence-based group representation learning for group

recommendation. In ICDE. 566–577.
[55] Yuan Yin and ZheweiWei. 2019. Scalable Graph Embeddings via Sparse Transpose

Proximities. In SIGKDD. 1429–1437.
[56] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,

and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-Scale

Recommender Systems. In SIGKDD. 974–983.
[57] Zhitao Ying, Jiaxuan You, Christopher Morris, Xiang Ren,Will Hamilton, and Jure

Leskovec. 2018. Hierarchical graph representation learning with differentiable

pooling. NeurIPS 31 (2018).
[58] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An

end-to-end deep learning architecture for graph classification. In AAAI, Vol. 32.
[59] Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. 2021. Labeling

trick: A theory of using graph neural networks for multi-node representation

learning. NeurIPS 34 (2021), 9061–9073.
[60] Shiqi Zhang, Jiachen Sun, Wenqing Lin, Xiaokui Xiao, and Bo Tang. 2022. Mea-

suring Friendship Closeness: A Perspective of Social Identity Theory. In CIKM.

3664–3673.

[61] Xingyi Zhang, Kun Xie, Sibo Wang, and Zengfeng Huang. 2021. Learning Based

Proximity Matrix Factorization for Node Embedding. In SIGKDD. 2243–2253.

Constrained Social Community Recommendation KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A PROOF OF THEOREM
Proof of Theorem 2. Let 𝑿 (𝑙2) denote the original feature matrix

after taking column-wise 𝐿2 normalization. According to the defi-

nitions, 𝑿
:,𝑘 indicates the portion of feature information currently

propagated at each node but has not been stored yet, 𝑯
:,𝑘 indicates

the portion of feature information stored at each node. For the 𝑘-th

column 𝑿 (𝑙2)
:,𝑘

, we divide its entries by 𝐿1 =

𝑿 (𝑙2)
:,𝑘

1

, which is a

constant determined by the original feature values. So we have∑
𝑢∈U∪C 𝑿

(𝑙2)
𝑢,𝑘
/𝐿1 = 1. Then, the following invariant always holds

for each column 𝑘 :

𝑿
(𝑙2)
:,𝑘

𝐿1

1

=

𝑯 :,𝑘

𝐿1

1

+

𝑿 :,𝑘

𝐿1

1

.

In particular, the initial states satisfy the above equation, by induc-

tion, it can be proved that the above equation always holds after

each push operation.

Wang et al. [43] have shown that forward push algorithms can

be extended to arbitrary source distributions, in which the PPR

values can still be computed without compromising their asymp-

totic guarantees. Since

∑
𝑢∈U∪C 𝑿

(𝑙2)
𝑢,𝑘
/𝐿1 = 1, 𝑿 (𝑙2)

:,𝑘
/𝐿1 can be

regarded as a distribution generated by the 𝑘-th feature vector. Re-

cap from Algorithm 1 that, it propagates features using 𝛼-discount

random walks. When

𝑿
:,𝑘

1
= 0, the exact propagation results

will be stored in 𝑯
:,𝑘 . Therefore, calculating 𝑯

:,𝑘/𝐿1 is equiva-

lent to calculating PPR values on the distribution initialized by

𝑿 (𝑙2)
:,𝑘
/𝐿1. When

𝑿
:,𝑘/𝐿1

1
= 0, we can derive the true PPR val-

ues corresponding to the distribution initialized by 𝑿 (𝑙2)
:,𝑘
/𝐿1, i.e.,

𝑿 (𝑙2)

:,𝑘
/𝐿1

1

=

𝑯

:,𝑘/𝐿1

1
; otherwise,

𝑯
:,𝑘/𝐿1

1
≤

𝑿 (𝑙2)

:,𝑘
/𝐿1

1

.

The cost of the feature propagation is dominated by the number

of push operations. Given a node𝑢 on feature dimension 𝑘 , the push

operation is invoked on node𝑢 if and only if𝑿𝑢,𝑘 > 𝜖 ·𝑑𝑢 . Let 𝑯 𝑙
𝑢,𝑘

denote the stored value that is propagated to node 𝑢 with 𝑙-hop

random walks. Then the total number of push operations caused

by the stored value 𝑯 𝑙
𝑢,𝑘

can be bounded by

𝑯 𝑙
𝑢,𝑘

𝛼 ·𝜖 ·𝑑𝑢 . In addition,

the cost of each push operation on node 𝑢 is 𝑂 (𝑑𝑢). Therefore, the
total cost of the push operations caused by 𝑯 𝑙

𝑢,𝑘
is bounded by

𝑯 𝑙
𝑢,𝑘

𝛼 ·𝜖 ·𝑑𝑢 · 𝑑𝑢 . The total time cost of Algorithm 1 on all nodes is:

𝐹+1∑︁
𝑘=1

∞∑︁
𝑙=0

∑︁
𝑢∈U∪C

𝑯 𝑙
𝑢,𝑘

𝛼 · 𝜖 · 𝑑𝑢
· 𝑑𝑢

≤ 1

𝛼 · 𝜖

𝐹+1∑︁
𝑘=1

∑︁
𝑢∈U∪C

∞∑︁
𝑙=0

𝑯 𝑙
𝑢,𝑘
≤ 1

𝛼 · 𝜖

𝐹+1∑︁
𝑘=1

∑︁
𝑢∈U∪C

𝑿 (𝑙2)
𝑢,𝑘

,

Since𝑿 (𝑙2) is 𝐿2-normalized, we have

∑
𝑢∈U∪C

(
𝑿 (𝑙2)
𝑢,𝑘

)
2

= 1. Then,

by Cauchy–Schwarz inequality, we have∑︁
𝑢∈U∪C

𝑿 (𝑙2)
𝑢,𝑘
≤
√
𝑛 + 𝑛𝑐 .

Therefore, we can derive that

1

𝛼 · 𝜖

𝐹+1∑︁
𝑘=1

∑︁
𝑢∈U∪C

𝑿 (𝑙2)
𝑢,𝑘
≤ 1

𝛼 · 𝜖

𝐹+1∑︁
𝑘=1

√
𝑛 +𝑚 =

𝐹 + 1

𝛼 · 𝜖 ·
√
𝑛 +𝑚,

where 𝛼 can be treated as a constant number. Thus, the total

time complexity of Algorithm 1 on all dimensions is bounded by

𝑂 (𝐹
√
𝑛 +𝑚/𝜖). □

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Related Work

	3 ComRec Framework
	3.1 Overview
	3.2 Labeling Mechanism
	3.3 Global Feature Propagation
	3.4 Local Feature Propagation
	3.5 Training and Prediction

	4 Experiments
	4.1 Experimental Settings
	4.2 Offline Evaluation

	5 Deployment
	5.1 Setup
	5.2 Online Evaluation

	6 Conclusion
	Acknowledgments
	References
	A Proof of Theorem

